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Abstract: 39 

Diverse and non-Lactobacillus-dominated vaginal microbial communities are associated with 40 

adverse health outcomes such as preterm birth and the acquisition of sexually transmitted 41 

infections. Despite the importance of recognizing and understanding the key risk-associated 42 

features of these communities, their heterogeneous structure and properties remain ill-defined. 43 

Clustering approaches are commonly used to characterize vaginal communities, but they lack 44 

sensitivity and robustness in resolving substructures and revealing transitions between potential 45 

sub-communities. Here, we address this need with an approach based on mixed membership 46 

topic models, using longitudinal data from cohorts of pregnant and non-pregnant study 47 

participants. We identify several non-Lactobacillus-dominated sub-communities common to both 48 

cohorts and independent of reproductive status. In non-pregnant individuals, we find that the 49 

menstrual cycle modulates transitions between and within sub-communities. In addition, a 50 

specific non-Lactobacillus-dominated sub-community, which was associated with preterm 51 

delivery in pregnant participants, was also more common during menses, a time of elevated 52 

vaginal inflammation in non-pregnant participants. Overall, our analyses based on mixed 53 

membership models reveal substructures of vaginal ecosystems which may have important 54 

clinical and biological associations.   55 
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Introduction 56 

Several critical aspects of women’s health are linked to the structure of the vaginal microbiota 57 

(1–3). Vaginal microbiotas dominated by beneficial Lactobacillus species are associated with 58 

positive health outcomes (3). A paucity of Lactobacillus and a diverse array of strict and 59 

facultative anaerobes, however, are associated with negative health outcomes such as preterm 60 

birth (4, 5) and susceptibility to sexually transmitted infections (6–9), including HIV (10–12). 61 

Longitudinal studies of vaginal microbiota composition have revealed its dynamic nature: 62 

microbiota composition frequently changes over time (4, 13, 14). In non-pregnant individuals, a 63 

virtually complete replacement of the microbiota is sometimes observed, typically around the time 64 

of menses (13, 15). While complete replacement is rare, more modest (i.e., of a fraction of the 65 

microbiota composition), or slower (i.e., over a few days or weeks) changes in composition are 66 

relatively common in both pregnant and non-pregnant individuals (4, 13, 14). The microbiota of 67 

pregnant women may appear more stable than that of non-pregnant individuals; however, 68 

differences in sampling frequencies (e.g., weekly during pregnancy vs daily outside of pregnancy) 69 

might not allow us to fully characterize the differences in microbiota dynamic. Non-Lactobacillus 70 

dominated microbiotas are generally less stable than Lactobacillus dominated ones (4, 13, 14). 71 

Some Lactobacillus species, such as L. crispatus, better resist invasion or replacement by non-72 

Lactobacillus species and create greater vaginal ecosystem stability during and outside 73 

pregnancy (14, 16, 17). Other Lactobacillus species, such as L. iners, are more frequently 74 

associated with non-optimal communities (14, 16, 17). Non-optimal vaginal microbiotas (i.e., non-75 

Lactobacillus-dominated microbiota) are typically highly heterogeneous within and between 76 

individuals (4, 14, 16). It remains, however, poorly understood whether non-optimal microbiota 77 

composition is random (i.e., individual-specific) or if distinct sub-communities (i.e., consortia of 78 

bacteria interacting with each other) exist within these diverse microbiotas. If such sub-79 

communities do exist, it remains to be seen whether they are differentially associated with 80 

characteristics of the host or with specific negative health outcomes, such as preterm birth.  81 

 82 

Efforts to address this question have so far relied on clustering approaches. Various clustering 83 

methods are commonly applied to taxonomic abundance tables to define community structure. 84 

This has led to the adoption of the concepts of community state types (CST) or community types 85 

(CTs) (18, 19). More recently, in order to define reference sub-CSTs (i.e., dataset- or study-86 

independent state types), large composite datasets have been clustered, and several non-87 

Lactobacillus-dominated clusters (sub-CSTs) have been identified across populations of non-88 

pregnant women (20). Clustering serves as a useful dimensionality reduction tool for describing 89 

complex microbiota compositions. However, clustering-based categorization of samples may fail 90 

to capture clinically-relevant structures. For example, the vaginal microbiota of two women could 91 
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belong to the same cluster because their microbiotas both show a bare majority of L. iners (e.g., 92 

60%), but be accompanied by L. crispatus in one case, and by a diverse panel of non-93 

Lactobacillus species in the other case. The two situations may appear similar (i.e., each may be 94 

assigned to CST III), but they may be driven by different mechanisms and have different health 95 

implications. In addition, clustering based approaches fail to model transition or intermediary 96 

states between clusters (Fig 1). Modeling transitions is especially important in the context of the 97 

vaginal microbiota as its composition may change several times over a few months, weeks or 98 

even a few days, as observed in non-pregnant, menstruating individuals (4, 14–16). However, 99 

because samples are assigned only to a single cluster (Fig1a), transitions between clusters may 100 

appear identical (i.e., described by the same sequence of clusters) while the underlying 101 

microbiota trajectories were drastically different in rate (progressive vs abrupt) or in the nature of 102 

the intermediate compositions. Finally, while clustering approaches can identify sets of species 103 

that frequently co-occur, they are not well suited to identify subsets of species that may have 104 

similar functions but that are not frequently found together (Fig 1b). These discrepancies between 105 

the clustering assumptions and our understanding of the composition and dynamics of the vaginal 106 

microbiota highlight the need for better-suited dimension reduction statistical models. 107 

 108 

Topic models, first developed to infer population structure (21) and later formally described as 109 

Latent Dirichlet Allocation (LDA) in the context of natural language processing (22), have recently 110 

been proposed for analyzing microbial communities and identifying sub-communities (23). In 111 

contrast to clustering-based categorization, where each sample is assigned to a single category 112 

based on the closest cluster, samples are modeled as mixtures of topics (sub-communities), and 113 

each topic is characterized by a particular distribution of bacterial species or strains. For example, 114 

if a sample were described as 70% topic 1 and 30% topic 2, this would mean that the species 115 

subsumed in topic 1 accounted for 70% of the sample, while the species in topic 2 accounted for 116 

the remaining 30%. Some species can be found in several topics (e.g., a species can co-exist 117 

within two distinct sub-communities). Topics may be composed of a few species or strains 118 

(sparse topics) or include a larger number. In addition to providing a more realistic model of 119 

microbiota composition, topic models present the advantage of not requiring any normalization 120 

of the taxa count tables (typically the number of 16S rRNA genes sequenced in each sample) as 121 

they are hierarchical Bayesian models explicitly accounting for library sizes.  122 

 123 

In this study, we sought to deepen our understanding of the fine structure of non-optimal vaginal 124 

microbiotas by applying topic models (mixed membership models) to longitudinal samples 125 

acquired from pregnant and non-pregnant women. We examined the similarities and differences 126 

in sub-community composition between cohorts and compared them to previously identified 127 



 

 5 

reference clusters. We then investigated the clinical relevance of the identified sub-communities 128 

and their association with host characteristics, pregnancy status, phase of the menstrual cycle 129 

(in non-pregnant individuals), and the risk of preterm birth (in pregnant individuals). The 130 

concentrations of vaginal metabolites (both host- and bacteria-produced) and cytokines (host-131 

produced) were also quantified longitudinally in non-pregnant individuals but at a lower temporal 132 

resolution (five samples from 40 non-pregnant participants) and were analyzed for correlations 133 

with the menstrual cycle. 134 

 135 

 136 
Figure 1: Topic models are mixed membership models that reveal transitions between states. (a) Schematics contrasting 137 
sample characterization in a lower dimensional space by clustering methods versus topic models. In both schematics, each dot 138 
is a sample. Larger colored dots in the clustering schematic indicate centroids. (b) Schematic illustrating the phenomenon of 139 
“functional equivalence” and how clustering methods versus topic models represent it.  We consider two or more species 140 
potentially “functionally equivalent” if they tend to occupy the same ecological niche (thrive in similar environments and with other 141 
species) but are rarely found together because they may compete for the same resources. (c-d) Examples of time-series displays 142 
of changes in microbiota composition summarized by clusters membership (sub-CST - top) or topic proportions (bottom) in a 143 
pregnant (panel c) and non-pregnant (panel d) participant. Topics were labeled such that their name matched the (sub)CST with 144 
the most similar composition (see Fig. 2c). 145 
  146 
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Results 147 

 148 

Topic analysis identifies nine sub-communities in the vaginal microbiota of pregnant and 149 

non-pregnant women. 150 

We analyzed data from 2,179 vaginal samples collected weekly from 135 pregnant individuals 151 

enrolled at two sites in the United States (Stanford University, Stanford, CA and University of 152 

Alabama, Birmingham, AL) and 1,534 vaginal samples collected daily from 30 non-pregnant 153 

individuals enrolled at the University of Alabama, Birmingham (Methods, Table S1 for 154 

demographic data). Topic models were fit to the count data of 16S rRNA amplicon sequence 155 

variants (ASVs) agglomerated by taxonomic assignment.  156 

 157 

Topic analysis requires choosing K, the number of topics, to model the provided count data. K 158 

can be estimated using cross-validation or, as recently proposed (24), by performing topic 159 

alignment across models with different resolutions (i.e., with different K, Fig 2a). In contrast to 160 

cross-validation, this latter approach shows how topics at higher resolution relate to topics at 161 

lower resolution and provides several diagnostic scores. These scores characterize each topic 162 

across degrees of resolution and allow us to evaluate whether the data deviate from LDA 163 

assumptions. Our topic alignment suggested that 9 topics provided the best compromise between 164 

dimension reduction and accurate modeling of taxonomic counts (Methods, SI, Fig 2a-b). If a 165 

coarser resolution were desired, the alignment refinement scores suggested that K = 5 topics 166 

would be the most suited as topics at higher resolutions were sub-topics of these five topics (SI, 167 

Fig 2b).  168 

 169 

At K = 9, four of these nine topics were dominated by one of the four most common Lactobacillus 170 

spp. (L. crispatus, L. gasseri, L. iners, and L. jensenii, Fig 2a-b). The composition of the five 171 

remaining topics did not include any Lactobacillus spp. (Fig 2a-b). These five non-Lactobacillus 172 

topics could be grouped into two groups based on the topic alignment: one group contained three 173 

topics which included Gardnerella, Atopobium, and Megaspaera spp., while the other group 174 

contained Finegoldia, Corynebacterium, and Streptococcus (Fig 2a-b).  175 

 176 

Topics provide a more succinct, yet more accurate, description of microbiota composition 177 

than sub-CSTs. 178 

To evaluate the generalizability of the identified sub-communities, we compared the topic 179 

composition with the composition of the 12 “reference” clusters (sub-CSTs, Valencia centroids) 180 

described previously and identified in a composite dataset of non-pregnant individuals’ samples 181 

(20) (Fig 2c). To compare topic and cluster compositions, we computed the Bray-Curtis 182 
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dissimilarities between the two compositions after harmonizing taxonomic assignments (Fig 2c, 183 

Methods, SI). Topics were labeled to match the (sub-)CST label of the cluster to which they were 184 

most similar (Methods) (Fig. 1c-d, Fig. 2b). The comparison showed that two L. crispatus-185 

dominated sub-CSTs (I-A and I-B) have high similarity with the single L. crispatus-dominated 186 

topic (I). Similarly, two L. iners-dominated sub-CSTs (III-A and III-B) match a single L. iners-187 

dominated topic (III). This is because CST I-A and I-B (or III-A and III-B) describe microbiotas 188 

that are either fully dominated by L. crispatus (subCST I-A) or L. iners (subCST III-A) versus 189 

those dominated by L. crispatus or L. iners but also hosting other species (sub-CST I-B or III-B). 190 

In contrast, because topic models allow samples to be composed of several topics, a single topic 191 

is sufficient to account for L. crispatus (topic I) or L. iners (topic III) counts. Samples in which L. 192 

crispatus co-exists with L. iners will be represented by a mix of topics I and III, while a sample 193 

where L. crispatus co-exists with a Gardnerella species by a mix of topics I and IV-A/B. CST II 194 

and V have a one-to-one optimal match with topics II and V.  195 

 196 

When comparing the non-Lactobacillus sub-CSTs and topics, we observed that (i) sub-CST IV-197 

A and IV-B are represented by three topics (IV-A, IV-B.a, and IV-B.b), which can, in part, be 198 

explained by differences in taxonomic assignment used for topics (e.g., Gardnerella species are 199 

undifferentiated in sub-CSTs, while, here, some Gardnerella ASVs were matched to different 200 

species), and (ii) a single topic (IV-C1) matches four sub-CSTs (IV-C1 – IV-C4). This is because 201 

these four sub-CSTs only differ in the proportion of 4 seemingly mutually exclusive species 202 

(Streptococcus, Enterococcus, Bifidobacterium, and Staphylococcus), with one of these four 203 

species dominating each sub-CST; the prevalence of the remaining species is similar across the 204 

four IV-C1-4 sub-CSTs. In contrast, because topic models allow for synonyms, topic IV-C1 205 

embeds these species within a single topic, as illustrated in Fig 1b.  206 

 207 

We next examined three potential benefits of using topic mixed-memberships instead of 208 

clustering categorization (sub-CSTs). Our first conjecture was that topics would provide a more 209 

accurate representation of sample compositions than sub-CSTs. The second was that this effect 210 

would be primarily driven by samples from unstable microbiotas. Our third conjecture held that 211 

topic membership would better predict whether an individual is at risk of losing Lactobacillus 212 

dominance at the next time-point.  213 

 214 

To test our first conjecture (i.e., accuracy of representation), we compared the Bray-Curtis 215 

dissimilarity between the actual sample compositions and the sample compositions predicted by 216 

topic mixed memberships or by sub-CST membership. The predicted composition of a sample is 217 

either the composition of the centroid of the sample’s sub-CST or the average topic composition 218 
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(displayed in figure 2b) weighted by the proportion of each topic in that sample (Methods). The 219 

Bray-Curtis dissimilarity between actual sample composition and predicted sample composition 220 

was smaller when sample compositions were predicted by topics (Fig 2d). This effect was 221 

stronger in pregnant participants (mean difference = 0.12, paired t-test p-value < 0.001) than in 222 

non-pregnant participants (mean difference = 0.02, p-value < 0.001). The smaller mean 223 

difference in non-pregnant women compared to pregnant women can partially be explained by 224 

samples belonging to sub-CSTs IV-C1-4. These samples were dominated by one of the four 225 

seemingly mutually exclusive species mentioned above (Streptococcus, Enterococcus, 226 

Bifidobacterium, and Staphylococcus), considered synonyms in topic models, and found in a 227 

single topic.  When samples from sub-CST IV-C1-4 were omitted, the mean difference in 228 

dissimilarity in non-pregnant women increased from 0.02 to 0.07. 229 

 230 

Our second conjecture was that the composition of samples from stable microbiotas (i.e., the 231 

microbiota composition remains largely unchanged over time) would be equally well described 232 

by sub-CSTs or by topics because these microbiotas would have stabilized over more robust 233 

sub-communities that can be well captured by clustering approaches. In contrast, we expected 234 

that samples from unstable microbiotas would be better described by topic mixed memberships 235 

because the transitions between well-defined sub-communities can be captured better by varying 236 

memberships. Our results supported this expectation in pregnant participants, but not in non-237 

pregnant participants (Fig S1). To test this expectation, we used the Bray-Curtis dissimilarities 238 

computed above and compared their differences (sub-CSTs vs topics) in samples from stable vs 239 

unstable microbiotas. Samples were considered to harbor stable microbiotas if they belonged to 240 

a group of at least 5 consecutive samples whose Bray-Curtis dissimilarity was less than 0.25 241 

(similar results were obtained for 0.15 and 0.35 thresholds – see Table S2) and were considered 242 

to harbor unstable microbiotas or transition states otherwise. In pregnant participants, the mean 243 

difference in dissimilarities was 0.08 for samples from stable microbiotas and 0.14 for samples 244 

from unstable microbiotas (one-sided t-test p-value < 0.001). In non-pregnant participants, these 245 

differences were approximately the same in samples from both stable (0.03) and unstable (0.02) 246 

microbiotas.  247 

 248 

We next evaluated our third conjecture which was that topic memberships better identify 249 

individuals at risk of losing Lactobacillus dominance, defined here as overall Lactobacillus 250 

proportions falling below 50%. Past studies have shown that individuals whose microbiota is 251 

categorized as CST III (L. iners-dominated) are more at risk of losing Lactobacillus dominance 252 

than those in other Lactobacillus-dominated CSTs (I, II, and V) (17, 25) but this risk has not been 253 

evaluated with a more refined definition of microbiota composition. To do so, we trained logistic 254 
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regression models to predict whether an individual would lose their Lactobacillus dominance. 255 

Prediction performances were then evaluated on an independent test set and the procedure was 256 

repeated ten times using random splits of the data into training and test sets (Methods). Since 257 

only 11% of Lactobacillus dominated microbiotas switch to non-Lactobacillus dominated ones 258 

(i.e., we are predicting rare events), the F1 score, which is the harmonic mean of the prediction’s 259 

precision and sensitivity, was used to compare prediction performances (Fig 2e). This 260 

comparison shows that topic memberships better predict the risk of losing Lactobacillus 261 

dominance than sub-CST memberships do (median F1 score of 0.4 vs 0.27, Wilcoxon test p-262 

value < 0.002). Specifically, topic-based predictions are more precise (i.e., have a lower false 263 

positive rate) than sub-CST-based predictions (precision of 0.26 vs 0.16, p-value < 0.002, Fig 264 

S2). 265 

 266 

 267 

 268 
 269 
Figure 2: Sub-communities identified by topic models. (a) Alignment of topics (rectangles) for models fitted  with an increasing 270 
number of topics (x-axis). The height of the rectangles is scaled according to the total proportion of the corresponding topic in all 271 
samples: taller rectangles represent more prevalent topics. Topics are connected across models (x-axis) according to their 272 
alignment weight, which reflect their similarities (Methods). Topics of the k = 9 model are annotated with their most prevalent 273 
species, and the numbers in brackets in front of each species indicate the proportion of that species in the topic. The annotations 274 
included the three most prevalent species that made up at least 5% of the topic composition. (b) Topic composition for k = 5 275 
(coarse representation) or k = 9 (optimal tradeoff between dimension reduction and descriptive accuracy) topics (side-by-side 276 
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panels). The proportion of each species (y-axis) within each topic (x-axis) is encoded by the size of the dots. These proportions 277 
sum to 1 for each topic. For readability and conciseness of the figure, species were included if they accounted for at least 0.5% 278 
of a topic composition. (c) Comparison of the topic (x-axis) and sub-CST (y-axis) compositions. Compositions were compared 279 
using the Bray-Curtis dissimilarity. Topics and sub-CSTs with similar compositions are characterized by a low divergence and a 280 
darker hue. (d) Bray-Curtis dissimilarity between actual sample composition and predicted sample composition (y-axis) by sub-281 
CSTs or topics (x-axis) in non-pregnant (left panel) and pregnant (right panel) individuals. Each line is a sample, colored by its 282 
sub-CST membership. Stars in each panel indicate statistical significance of a one-sided paired t-test (***: < 0.001) (e) F1 scores 283 
(y-axis) for the prediction of Lactobacillus dominance loss (i.e., total proportion of Lactobacillus falling below 50%) at the next 284 
sample when the loss is predicted from sub-CST membership (light green) or topic memberships (dark turquoise).  The F1 score 285 
is the harmonic mean of the precision and the sensitivity of the predictions. Distributions were obtained from 10 independent 286 
training-testing sets (Methods, SI). Thin lines connect F1 scores from the same training-testing set.  287 
 288 

Given these results and the three advantages conferred by topic-based description of microbiota 289 

composition, we next explored the demographic associations and functional relevance of the 290 

identified sub-communities. 291 

 292 

Topic composition varies with demographic characteristics and pregnancy status. 293 

The samples used in this study were collected from three cohorts: non-pregnant women recruited 294 

at the University of Alabama Birmingham between 2009 and 2010, pregnant women recruited at 295 

the same institution between 2013 and 2015, and pregnant women recruited at Stanford 296 

University also between 2013 and 2015. Participants’ race and recruitment site were significantly 297 

associated with differential proportions of several topics. The microbiotas of Black participants 298 

and participants recruited at UAB were more likely to contain topics III (L. iners-dominated), IV-299 

A, and IV-B.a (both non-Lactobacillus-dominated) (fig3a-c). Topics III and IV-A were also more 300 

prevalent in pregnant participants, while topics IV-B.b and IV-C1 were less prevalent than in non-301 

pregnant participants (fig3a-c). 302 

 303 

Topics IV-C0 and IV-C1 increase during menses; topic IV-C1 is also associated with 304 

preterm birth. 305 

The proportions of both topics IV-C0 and IV-C1 increased during menses (p-values smaller than 306 

0.001 and 0.01 resp., fig 3c). In contrast, the proportion of topic I (L. crispatus-dominated, p-value 307 

< 0.01) decreased during menses. Consistent with previous findings (4), topic I (L. crispatus-308 

dominated) was associated with term delivery, while topic IV-C1 had a strong but mildly significant 309 

(p = 0.051) association with preterm delivery.   310 
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 311 
 312 
Figure 3: Sub-communities and demographic and reproductive characteristics. (a-b) Topic composition per racial group 313 
(a) or cohort (b). Vertical bars show the longitudinal average topic (color) proportion for each participant (x-axis). Participants are 314 
ordered by their most prevalent topic. (c) Dirichlet regression estimated coefficients (x-axis) quantifying the associations between 315 
race, study site, pregnancy status (y-axis) and topic proportions (horizontal panels). Colors indicate the strength of the statistical 316 
significance of the associations (p < 0.001: dark purple; p < 0.01: red; p < 0.05: orange; p < 0.1: yellow; p > 0.1: gray). (d) Topic 317 
proportions throughout the menstrual cycle (cycle day 0 indicates the first day of menses – see Fig 4a). Each dot is a sample. 318 
Lines connect samples from the same participant and cycle. Thick black lines show the average topic proportions across all 319 
participants. Stars on the right indicate the statistical significance of the associations between topic proportions and menstrual 320 
cycle (***: p < 0.001, **: p < 0.01). (e) Logistic regression estimated coefficients (x-axis) quantifying the association between 321 
average topic proportion and preterm birth in pregnant individuals. Colors are as in panel (c). 322 
 323 
The menstrual cycle shapes the vaginal microbial composition. 324 

Prompted by the observation that the proportions of several topics varied with the menstrual 325 

cycle, we further investigated longitudinal associations between menstrual cycle and microbiota 326 

composition. Among the 30 non-pregnant participants, 26 had reported vaginal bleeding patterns 327 

that allowed for identification of at least one menstrual cycle within the ten study weeks 328 

(Methods), and for 20 participants, we had data over two consecutive menstrual cycles. Cycles 329 

were standardized starting from 18 days before menses to 7 days after the first day of menses, 330 

given that the luteal phase (after ovulation) is known to vary less in duration than the follicular 331 

phase (before ovulation) (26, 27) (Fig 4a, Methods). Ovulation was assumed to occur around 2 332 

weeks before the first day of menses based on average luteal phase duration (26, 27). 333 

 334 



 

 12 

The vaginal microbiota structure of 4/20 participants (20%), characterized by topic proportions, 335 

showed a statistically significant agreement between consecutive cycles (Fig 4b-d) as measured 336 

by the RV coefficient (adj. p-value < 0.05, Methods). However, while the topic proportions may 337 

remain relatively stable throughout cycles, the underlying taxa composition may vary (e.g., for 338 

participant UAB077, fig 4d-e). Half (10/20) of the participants had a statistically significant 339 

agreement between their taxa proportions in two consecutive cycles (Fig 4b, right panel).  340 
 341 
 342 

 343 
Figure 4: The menstrual cycle shapes the microbial composition. 344 
(a) Schematic illustrating the features of standardized cycles. (b) Scatter plot, in which each dot is a participant, showing the RV 345 
coefficient of agreement (y-axis) between the relative proportions of topics (left panel) or taxa (right panels) of a participant’s 346 
consecutive cycles and the magnitude of change in microbiota composition throughout the cycle measured by the maximum of 347 
the pairwise Bray-Curtis dissimilarity between the average topic or taxa proportions for each cycleday (x-axis). Participants 348 
selected for panels c-e are highlighted in blue. (c-d) Topic composition of two participants with data available for at least two full 349 
menstrual cycles. The first menstrual cycle is displayed in orange and the second in black. These two participants were selected 350 
to show the diversity of temporal profiles. The time series display shows topic proportion (y-axis) on each cycle day (x-axis). For 351 
each study participant, topics were included if their median proportion across cycles was higher than 1% and their maximal 352 
proportion was higher than 5%. (e) Same display as in panels c-d but where the y-axis shows the relative abundance of each 353 
taxon for that participant. Taxa were included following the criteria used to select topics in panels c-d. 354 
 355 

We further investigated whether the vaginal environment, characterized by pH values and vaginal 356 

metabolite and cytokine concentrations, varied with the menstrual cycle. Consistent with past 357 

results (18), the vaginal pH of Lactobacillus-dominated samples (i.e., proportions of Lactobacillus 358 

> 50%) was lower (4.4, 90% 4.0-5.3) than that of non-Lactobacillus-dominated samples (5.0, 90% 359 

4.0-5.8). The pH remained stable throughout the cycle (Lactobacillus-dominated: 4.3, 90% 4.0-360 

5.3; non-Lactobacillus dominated: 4.9, 90% 4.0-5.5), except during menses when it increased by 361 

about 0.5 units in Lactobacillus-dominated (4.7, 90% 4.0-5.8) and non-Lactobacillus-dominated 362 

samples (5.4, 90% 4.4-7.0) (Fig 5a).  363 

 364 
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Half of the cytokines (10 out of 20, p-values < 0.01, adjusted for multiple testing) showed a 365 

significant association with the menstrual cycle. Most cytokines (e.g., IL6 or TNFα) peaked during 366 

menses, while two of them (IFNγ and IL13) showed elevated abundance about the time of 367 

ovulation (Fig 5b, Fig S3). 18% of metabolites (60 out of 336) were also significantly associated 368 

with the menstrual cycle (Fig 5c, Fig S4). Most (72%) had increased or decreased abundances 369 

in the late luteal phase or during menses (between cycle day -3 and 5, Fig S4).   370 

 371 

 372 
Figure 5: Vaginal pH, cytokines, and metabolites throughout the menstrual cycle. 373 
(a) Distribution of vaginal pH throughout the menstrual cycle in Lactobacillus-dominated samples (blue) and non-Lactobacillus-374 
dominated samples (orange). Dots indicate the means, while the shaded vertical bars span from the 25th to the 75th percentiles. 375 
(b-c) Concentration (y-axis) of four cytokines (panels in b) and six metabolites (panels in c) with significant concentration 376 
variations throughout the menstrual cycle (x-axis). Each black dot is a sample.   377 
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Discussion 378 

In this study, we used topic models, a mixed membership method, to identify bacterial sub-379 

communities within vaginal microbiota samples from both pregnant and non-pregnant US 380 

women. We identified four Lactobacillus-dominated sub-communities corresponding to the four 381 

Lactobacillus-dominated community state types (CST), and five non-Lactobacillus sub-382 

communities (i.e., topics), refining the structure of samples traditionally assigned to community 383 

state type (CST) IV (18).  This CST is particularly relevant clinically as a paucity of Lactobacillus 384 

species is associated with bacterial vaginosis (BV), increased risk of preterm birth, and 385 

susceptibility to acquiring sexually transmissible infections (3, 5, 6, 10–12, 25, 28). 386 

 387 

These five non-Lactobacillus sub-communities were found to belong to two groups. One group 388 

contained three topics (IV-A, IV-B.a, IV-B.b) and was characterized by the co-occurrence of ASVs 389 

taxonomically assigned to species from the Gardnerella, Megasphaera, Atopobium, 390 

Fastidiosipila, and Sneathia genera and of Prevotella amnii. The other group contained two topics 391 

(IV-C0 and IV-C1). It was characterized by the co-occurrence of species from the 392 

Corynebacterium, Finegoldia, Peptoniphilus, Bifidobacterium, Staphylococcus, and 393 

Streptococcus genera, and of Prevotella bivia/denticola and timonensis. These two groups align 394 

with sub-groups previously identified with a clustering approach that aimed to identify reference 395 

community state types in non-pregnant women from a large collated dataset (20): sub-CST IV-A 396 

and B belong to the first group of 3 topics, and sub-CSTs IV-C0-4 to the second group. This study 397 

thus confirms that non-Lactobacillus-dominated microbiotas present sub-structures that may 398 

have clinical relevance.  399 

 400 

The main difference between the approach used here (topic analysis) and clustering approaches 401 

traditionally used to identify sub-groups in the vaginal microbiota lies in the mixed membership 402 

nature of topic models, thereby allowing samples to be associated with multiple topics in different 403 

proportions. This property offers the advantage of revealing longitudinal transitions between sub-404 

communities and the rate at which they occur, which is impossible with clustering approaches. 405 

We showed here that, in pregnant participants, stable microbiotas were almost equally well 406 

characterized by clusters and topics; in contrast, unstable microbiotas composition was better 407 

represented by mixed topic memberships than by sub-CSTs. We also observed that topic 408 

memberships could better predict the risk that a participant’s microbiota would lose its 409 

Lactobacillus dominance and switch to a sub-optimal microbiota composition.  410 

 411 

In this study, we compared topic- and clustering-based sample descriptions in cases in which 412 

sub-communities (mixed) memberships were used as explanatory variables; the actual 413 
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microbiota composition or the risk of losing Lactobacillus dominance were our response 414 

variables. We expect that colleagues might also find advantages in using sub-communities mixed 415 

memberships (topic-based sample description) as a multivariate response variable to identify 416 

host or intervention related factors associated with specific transitions or intermediate states. In 417 

contrast to univariate alternative or clustering, this might better reflect the potential multiple 418 

etiologies of vaginal dysbiosis.  419 

 420 

Another difference between topic models and clustering approaches is that topic models allow 421 

for “synonyms”, which may reflect potential functional equivalences in a microbial community 422 

context. Indeed, if two species are found interchangeably (but not simultaneously) with a specific 423 

combination of other species, these two species will be found in the same topic. In contrast, 424 

clustering approaches tend to create two clusters, one containing each of these two species, 425 

potentially artificially increasing the number of functionally relevant sub-communities. This 426 

matches our observations as a single topic encapsulates four sub-CSTs (IV-C1-4) (20) 427 

characterized by four mutually exclusive taxa that co-occur with the same set of other species. 428 

These four taxa belong to the genera Streptococcus, Enterococcus, Bifidobacterium, and 429 

Staphylococcus and these sub-communities are found with higher prevalence in non-pregnant 430 

individuals, often during menses. 431 

 432 

Topic models used in this study are unsupervised methods, and, like clustering, topic models 433 

identify dataset-specific features. This means that sub-communities identified in samples from a 434 

different cohort may differ from those identified in this study. However, we expect these sub-435 

communities to be reproducibly observed in other (North American) populations since the sub-436 

communities revealed by our analysis were found in individuals from three distinct cohorts, 437 

encompassing both pregnant and non-pregnant individuals. Further, the agreement between the 438 

topic composition and the composition of sub-CSTs, which had been identified from non-pregnant 439 

individuals’ samples, supports the generalizability of our findings. Deeper sequencing methods 440 

(e.g., metagenomics) may allow a more precise taxonomic characterization of microbiota 441 

samples, which may, in turn, enable further refinement of these sub-communities. 442 

 443 

We found several associations between these subcommunities and the demographic 444 

characteristics or reproductive status of participants. Specifically, Black women were more likely 445 

to have a microbiota containing L. iners (topic III) and non-Lactobacillus subcommunities from 446 

the first group (topics IV-A, IV-B.a, and IV-B.b). Regarding differences associated with 447 

participants’ reproductive state, non-Lactobacillus topics from the second group (topics IV-C0 448 

and IV-C1) were more prevalent in non-pregnant individuals than in pregnant women. They were 449 
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especially more frequent during menses, a time characterized by elevated vaginal inflammation, 450 

as 40% of the measured cytokines had higher concentrations during menses. In pregnant 451 

individuals, topic IV-C1 showed a mildly significant association with the risk of preterm birth. It 452 

remains to be investigated whether vaginal inflammation is also elevated in pregnant individuals 453 

with a higher abundance of this sub-community. Our available data did not allow us to answer 454 

this question. 455 

 456 

Almost all non-pregnant participants with data available for two menstrual cycles showed a high 457 

between-cycle correlation in their vaginal microbiota variation. Most topics or taxa, however, 458 

reached their maximal relative abundance at different menstrual cycle phases in different 459 

individuals. These inter-individual differences may be an artifact of the compositional nature (i.e., 460 

relative abundances) of our data or could be due to (i) inter-individual differences in menstrual 461 

timing (for example, one participant might have a 10-day luteal phase while another one might 462 

have a 14-day luteal phase); (ii) inter-individual differences in hormone levels (or the rates of 463 

change in these levels); or (iii) the set of species present in each individual and how each of these 464 

species might respond differently to the menstrual cycle while competing for resources. Future 465 

clinical studies including hormonal measurements would allow a better understanding of the 466 

relationships between hormonal changes and microbiota composition. Similarly, additional data 467 

would be necessary to understand if abrupt hormonal changes, the presence of blood, or the use 468 

of menstrual protections such as pads or tampons drive the substantial changes in vaginal 469 

microbiota composition observed during menses.  470 

 471 

These abrupt changes in microbiota composition around menses were accompanied by changes 472 

in vaginal cytokine and metabolite levels. As mentioned above, 8 out of 20 measured cytokines 473 

had elevated levels during menses (and 2 around ovulation), and 70% of the 60 metabolites that 474 

varied with the menstrual cycle peaked or dropped during menses. For example, kynurenine 475 

peaked during menses while isoleucine dropped. Kynurenine is a tryptophan catabolite via a 476 

pathway involving IDO1-mediated degradation. It is known to play a role in blood vessel dilatation 477 

during inflammatory events (29). The elevated levels of kynurenine during menses found in our 478 

study are thus consistent with these roles and with past studies showing varying levels of 479 

kynurenine in serum and urine through the cycle (30, 31). In our vaginal samples, isoleucine, a 480 

branched-chain amino acid with important metabolic functions (32), was found with the highest 481 

levels in the luteal phase and lowest during menses. Interestingly, serum levels of isoleucine 482 

show opposite trends (33). The menstrual changes in cytokine concentrations were consistent 483 

with those identified in previous studies in non-pregnant individuals (34, 35). In addition to the 8 484 

cytokines that had elevated levels around menses, IFNγ and IL13 had elevated levels around 485 
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ovulation. Further studies in which the clinical and reproductive state of participants is more 486 

accurately measured would allow one to confirm these findings and to further investigate the 487 

associations between local inflammation and microbiota composition.  488 

 489 

Conclusions 490 

Topic analysis revealed bacterial sub-communities (topics) shared across pregnant and non-491 

pregnant women, confirming the existence of sub-structures in non-Lactobacillus-dominated 492 

microbiota and their possible clinical relevance. Compared to clustering approaches traditionally 493 

used to categorize microbial composition, topics provide an expanded characterization of the 494 

heterogeneity of the previously described risk-associated community state type IV (CST IV), a 495 

high-resolution view of transitions between communities, and they better predict the loss of 496 

Lactobacillus dominance. We found that the menstrual cycle had a strong impact on the vaginal 497 

microbiota and on vaginal levels of 60 metabolites and half (10/20) of the measured cytokines. 498 

Specifically, one sub-community with increased prevalence during menses, a time of elevated 499 

vaginal inflammation, was also mildly associated with the risk of preterm birth. In vitro studies will 500 

provide further functional insights into the identified sub-communities, their ecological network, 501 

and their effects on the vaginal epithelium.  502 

503 
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Material and Methods 504 
 505 
Cohorts and sample collection 506 
Daily samples from non-pregnant participants. The samples were obtained from 30 participants recruited 507 
at the University of Alabama, Birmingham (UAB) as part of the UMB-HMP study, which enrolled 508 
participants regardless of their BV diagnosis between 2009 and 2010 (15). Participants with symptomatic 509 
BV were treated using standard-of-care practices (15). These 30 participants were selected to represent 510 
women with stable Lactobacillus-dominated microbiota, stable non-Lactobacillus-dominated microbiota, 511 
and unstable microbiota (i.e., with samples dominated by Lactobacillus and others dominated by non-512 
Lactobacillus). Each participant self-collected daily vaginal swabs for 10 weeks, resulting in a maximum 513 
of 10 x 7 = 70 samples per individual. For further detail about recruitment criteria and sample collection, 514 
see (15).  515 
Weekly samples from pregnant women. We used the samples from both cohorts presented previously (4). 516 
39 pregnant individuals were recruited at Stanford University (SU), and 96 pregnant individuals were 517 
recruited at the University of Alabama, Birmingham (UAB) between 2013 and 2015. Pregnant participants 518 
from both cohorts were enrolled from the fourth month of their pregnancy (earliest enrollment at week 8, 519 
latest at week 22), and vaginal swabs were collected weekly (approximately) until delivery. There was an 520 
average of 16 samples per participant and 2179 samples in total. The distributions of age, BMI, and race 521 
were significantly different between the two cohorts (Table S1). Participants recruited at UAB were part of 522 
a pool of individuals for which intramuscular progesterone injections (17-OHPC) were indicated or 523 
recommended. UAB participants received that treatment throughout pregnancy. The treatment is intended 524 
to reduce the risk of preterm birth in pregnant women with a singleton pregnancy and who have a history 525 
of singleton spontaneous preterm birth. 9/39 (23 %, SU) and 41/96 (43 %, UAB) participants delivered 526 
preterm, defined as a delivery before 37 weeks of gestation. 527 
Metabolite and cytokine samples. Metabolites and cytokine concentrations were quantified in a subset of 528 
the non-pregnant samples. Specifically, 5 samples per non-pregnant participant were selected such that 529 
they were separated by approximately 2 weeks. In addition, 5 samples each were from 10 additional non-530 
pregnant participants of the UMB-HMP study but recruited at different sites (Emory University and the 531 
University of Maryland Baltimore).  In total, metabolites and cytokines were quantified in 200 samples from 532 
40 non-pregnant individuals. 533 
 534 
Ethics 535 
All participants provided written informed consent. Ethical approval was obtained from the Institutional 536 
Review Boards of Stanford University (IRB protocol no. 21956), the University of Alabama (protocol no. 537 
X121031002), Birmingham, Emory University, and the University of Maryland Baltimore. All research was 538 
conducted in compliance with relevant guidelines and regulations. 539 
 540 
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Vaginal microbiota sequencing 541 
Daily samples from the 30 non-pregnant participants recruited at UAB (1534 samples). The V3-V4 regions 542 
of the 16S rRNA gene were amplified and then sequenced with the Illumina HiSeq/MiSeq platforms. 543 
 544 
Weekly samples from pregnant participants of both cohorts (SU and UAB) (2179 samples): Raw sequence 545 
data from samples from pregnant participants were generated and processed as described in (4). In brief, 546 
genomic DNA was extracted from vaginal samples using a PowerSoil DNA isolation kit (MO BIO 547 
Laboratories). Barcoded primers 515F/806R (36) were used to amplify the V4 variable region of the 16S 548 
rRNA gene from each sample. Pooled amplicons were sequenced on the Illumina HiSeq platforms at the 549 
Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign.  550 
Demultiplexed raw sequence data from Illumina HiSeq/MiSeq were resolved to amplicon sequence 551 
variants (ASVs) as described in the DADA2 Workflow for Big Data 552 
(https://benjjneb.github.io/dada2/bigdata.html) (37). 553 
 554 
Taxonomic assignment. Automated taxonomic calls were made using DADA2’s implementation of the 555 
RDP naive Bayesian classifier (38) and a Silva reference database (version 132) (39). The assignment of 556 
sequences of the most abundant ASVs were refined and standardized by using BLAST and NCBI RefSeq 557 
type strains. This is the case for Lactobacillus, Candidatus Lachnocurva vaginae (previously referred to 558 
as BVAB1), Gardnerella, and Megasphaera lornae species-level assignments, following recently 559 
published work on these species (40, 41). Gardnerella ASVs were tagged as G1, G2, or G3 sensu (4) 560 
based on exact matching of the ASV sequences. Tables with the taxonomic assignments are available 561 
(see data availability section). 562 
 563 
Taxonomic agglomeration of ASV counts. ASV counts were aggregated based on their taxonomic 564 
assignment such that the counts of ASVs with the same taxonomic assignment were summed.  565 
 566 
Metabolite concentration quantification  567 
Untargeted metabolomics was performed on 200 non-pregnant participant samples by ultra-high-568 
performance liquid chromatography/tandem mass spectrometry (Metabolon, Inc.). Metabolite 569 
identification was performed at Metabolon based on an internally validated compound library, and results 570 
were expressed in relative concentrations, following the same protocol as in (42). All samples were 571 
shipped and analyzed in a single batch.  572 
 573 
Data transformation. We transformed the raw metabolite relative concentrations using a variance 574 
stabilizing method (43). Raw data included the concentrations of 853 metabolites. However, the 575 
abundance of 517 metabolites was missing in more than 50% of the samples. We removed these 576 
metabolites from the analysis. Despite this, measurements for most of the remaining 336 metabolites were 577 
still missing in at least one sample. Metabolites might be missing because their abundance was lower 578 
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than the detection limits or because the overall quality of a sample was lower. A sample with more than 579 
60% missing metabolites was further excluded for the rest of the analysis.  580 
 581 
Cytokine concentration quantification 582 
Vaginal cytokines were quantified in the 200 non-pregnant participant samples using a Luminex-based 583 
assay with a custom kit of 20 analytes (IFNγ, IL-1a, IL-1b, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-584 
17, IL-21, IL-23, IP-10, ITAC, MIG, MIP-1a, MIP-1b, MIP-3a, and TNFα) following the same protocol as in 585 
(12). The assay was run on a Luminex FLEXMAP 3D instrument. For measurements that were below the 586 
limit of quantification for a given cytokine, values were imputed at half the lower limit of quantification 587 
(LLOQ / 2). For measurements that were above the limit of quantification for a given cytokine, values were 588 
imputed as equal to the upper limit of quantification (ULOQ). Values reported here represent medians of 589 
two technical replicates. The medians were calculated after imputation in one or both replicates (if 590 
necessary), as described above. Missing cytokine values represent technical failures of the assay for that 591 
analyte. 592 
 593 
Data transformation. Raw cytokine abundances were log-transformed. Raw data included the abundance 594 
of 20 cytokines. Most of the cytokines could be quantified (11/4000 data points were missing).  595 
 596 
Data integration into a multi-assay experiment (MAE) object 597 
All analyses were performed in the R software environment (44). Specific packages used for the analyses 598 
are referred to in the next sections. The raw datasets were loaded and minimally processed before being 599 
formatted into SummarizeExperiment objects of the SummarizedExperiment bioconductor package (45), 600 
then combined into a single S4 object using the MultiAssayExperiment bioconductor package (46). 601 
 602 
Identifying bacterial sub-communities using topic analysis 603 
Microbial communities were estimated based on LDA (latent Dirichlet allocation) (22, 23). LDA models 604 
were fitted to the data for K (the number of topics) = 1 to 25 using the R package “topicmodels” (47). 605 
Models were fitted on the taxonomically agglomerated ASV counts directly, without any prior 606 
normalization; the library size being one of the parameters of this Bayesian framework.   607 
Topics were aligned across K using the topic alignment method described in (24). To identify robust topics 608 
across K, we used the alignment summary scores for topic coherence as defined in the same reference.  609 
 610 
Comparison of topic composition with subCST composition. 611 
Both sub-CSTs centroids (20) and topics are described as compositional data: for each sub-CST or topic, 612 
the proportion of each species is provided such that the proportions sum to one per sub-CST/topic. 613 
However, the taxonomic assignment used by France et al. (20) differs from the assignment used here. 614 
For example, sub-CSTs taxonomy does not differentiate between Gardnerella species or uses “BVAB1” 615 
when we use Ca. Lachnocurva vaginae. Consequently, to compare topics with sub-CSTs, we proceeded 616 
in two steps. First, we harmonized the taxonomic assignments between the two methods (e.g., proportions 617 
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of the different Gardnerella species were aggregated). A dictionary of the matched taxonomic assignment 618 
is available in the supplementary material. We then computed the Bray-Curtis dissimilarity between the 619 
composition of each topic and sub-CST centroid. 620 
 621 
Assignment to Valencia reference sub-CST 622 
Per France et al. (20), samples were assigned to the sub-CST that maximizes the Yue and Clayton 623 
similarity between the sample composition and the sub-CST centroids. 624 
 625 
Microbiota composition prediction from sub-CST and topic membership 626 
To compare how well sample composition was represented by sub-CST categories (fixed composition) or 627 
topics (fewer topics than sub-CSTs, but mixed memberships), we compared the Bray-Curtis dissimilarity 628 
between the actual sample compositions and the sample compositions predicted by topic mixed 629 
memberships or by sub-CST membership. The predicted composition of a sample is either the 630 
composition of the centroid of the sample’s sub-CST or the average of topics composition (displayed in 631 
figure 2b) weighted by the proportion of each topic in that sample (i.e., p!,# 	= 	∑ 𝛾!,$	𝛽$,#%

$	'	(  where p!,# is 632 

the proportion of taxa j in sample i, k is the topic index going from 1 to K, the total number of topics, 𝛾!,$ is 633 
the proportion of topic k in sample i, and 𝛽$,# is the proportion of taxa j in topic k).  634 

 635 
Microbiota local stability 636 
Samples were classified as belonging to a stable microbiota if they were part of a series of 5 consecutive 637 
samples with a Bray-Curtis dissimilarity smaller than a given threshold. Otherwise, the microbiota was 638 
considered unstable.  639 
 640 
Predicting the risk of losing Lactobacillus dominance 641 
To predict the risk of losing Lactobacillus dominance at the next time-point in participants’ longitudinal 642 
time series, a logistic regression model was fitted to the data. The explanatory variables were either the 643 
sub-CST category of the sample or the topic proportion at the current time point. The response variable 644 
was a binary variable indicating if the next sample belonged to a Lactobacillus-dominated sub-CST or not. 645 
Lactobacillus dominance was defined as a total proportion of Lactobacillus larger than 50%. The models 646 
were fitted on a training set (a random sample comprising 80% of the total dataset) and prediction 647 
performances were evaluated on the remaining 20% of the dataset. The procedure was repeated 648 
independently 10 times. Because the loss of Lactobacillus dominance is rare (10% of cases), we weighted 649 
the sample to give more weight (10 folds) to the minority class when training the models, and we used the 650 
F1 score, the harmonic mean between precision and sensitivity, to evaluate predictive performances. To 651 
test for differences in the sub-CST- vs topic-based prediction performances, a non-parametric Wilcoxon 652 
Rank sum test was used. 653 
 654 
Associations between topic composition and demographic variables 655 
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A Dirichlet regression was used to test if race, study site, or pregnancy were associated with differential 656 
topic proportions. Because most participants’ race was Black or White, the race was transformed into a 657 
three-category variable: Black, Other, and White, with “Other” serving as the reference. Pregnancy was a 658 
binary variable (pregnant vs. non-pregnant), and so was the study site: Stanford University (SU) vs. 659 
University of Alabama Birmingham (UAB). The model used is 	𝒑 = 𝛽	 +	𝛼)R	 +	𝛼*P	 +	𝛼+S	 + ε	where 𝒑 660 
is the vector of topic proportions lying on the K-dimension simplex. Coefficients were obtained using the 661 
DirichletReg package in R (48). 662 
 663 
Identification of phases of the menstrual cycle 664 
Menstrual cycles were identified from bleeding flows reported daily by participants on a scale from 0 (none) 665 
to 3 (heavy). A hidden semi-Markov model was specified to account for empirically observed distributions 666 
of cycle length and bleeding patterns across the menstrual cycle, including spotting between menses (49). 667 
Data of participants who reported too few days with bleeding (i.e., less than 3/70 study days) or too many 668 
(i.e., more than 30/70 study days) were excluded from the menstrual cycle analyses. Once cycles were 669 
identified (see Fig S5), cycle days were numbered forward and backward from the first day of the period. 670 
To align the two major menstrual events (i.e., ovulation and menses) across participants and given that 671 
the luteal phase has been well documented to vary less than the follicular phase (27), cycles were 672 
standardized starting from day -18 (i.e., 18 days before the start of the next cycle) and ending on day +7 673 
(i.e., 7 days after the first day of the menses). This definition ensures that the standardized cycles would 674 
include the days leading to ovulation, estimated to happen around days -12 to -14 (27), and allows for the 675 
best possible alignment of the two major menstrual events (ovulation and menses) in the absence of 676 
hormonal and/or ovulation markers.  677 
 678 
Testing for differential abundance throughout the menstrual cycle 679 
To identify metabolites, cytokines, or topics with differential abundance (metabolites or cytokines) or 680 
differential probabilities of being present at specific phases of the menstrual cycle, a linear model (for 681 
abundances) or logistic regression (proportions) was fitted to circular splines parameterized with 4 682 
degrees of freedom (R package “pbs”). Analysis of deviance was used to report p-values of the F-statistics 683 
and corrected for multiple testing using the Benjamini-Hochberg method.  684 
 685 
Associations between topic proportions and preterm birth. 686 
To test if topic proportions were associated with preterm birth, a logistic regression model was fitted on 687 
the data. Explanatory variables were the per-participant topic proportion averages, and the response 688 
variable was a binary variable indicating whether participants delivered preterm or not.  689 
 690 
Correlation in vaginal microbiota composition between two consecutive cycles 691 
To evaluate how the menstrual cycle affects the vaginal microbiota composition, we compute the RV 692 
coefficient (50) and associated permutation test p-value (51) between the topic or taxa proportions of the 693 
first cycle and of the second cycle. To quantify the magnitude of change in microbiota composition 694 
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throughout the cycle (x-axes of fig 4b), we first compute the average topic or taxa proportion across cycles 695 
for each cycleday. Then, the pairwise Bray-Curtis dissimilarities are computed so that the compositions 696 
of each cycleday are compared against each other. The maximum value is used to quantify the magnitude 697 
of change throughout the menstrual cycle for each participant. 698 
 699 
Availability of data and materials 700 
The sequence data for samples from non-pregnant study participants are available in the NCBI Sequence 701 
Read Archive (SRA) under BioProject accession numbers PRJNA208535 (samples beginning with UAB) 702 
and PRJNA575586 (samples beginning with AYAC and EM). Sequence data from samples from pregnant 703 
study participants are available on the SRA (accession no. PRJNA393472). The raw data and R code 704 
enabling the reproduction of the analyses are available at  https://purl.stanford.edu/gp215vr4425. The 705 
code is also provided in the SI. 706 

707 
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