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Abstract:

Diverse and non-Lactobacillus-dominated vaginal microbial communities are associated with
adverse health outcomes such as preterm birth and the acquisition of sexually transmitted
infections. Despite the importance of recognizing and understanding the key risk-associated
features of these communities, their heterogeneous structure and properties remain ill-defined.
Clustering approaches are commonly used to characterize vaginal communities, but they lack
sensitivity and robustness in resolving substructures and revealing transitions between potential
sub-communities. Here, we address this need with an approach based on mixed membership
topic models, using longitudinal data from cohorts of pregnant and non-pregnant study
participants. We identify several non-Lactobacillus-dominated sub-communities common to both
cohorts and independent of reproductive status. In non-pregnant individuals, we find that the
menstrual cycle modulates transitions between and within sub-communities. In addition, a
specific non-Lactobacillus-dominated sub-community, which was associated with preterm
delivery in pregnant participants, was also more common during menses, a time of elevated
vaginal inflammation in non-pregnant participants. Overall, our analyses based on mixed
membership models reveal substructures of vaginal ecosystems which may have important

clinical and biological associations.
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Introduction

Several critical aspects of women’s health are linked to the structure of the vaginal microbiota
(1-3). Vaginal microbiotas dominated by beneficial Lactobacillus species are associated with
positive health outcomes (3). A paucity of Lactobacillus and a diverse array of strict and
facultative anaerobes, however, are associated with negative health outcomes such as preterm
birth (4, 5) and susceptibility to sexually transmitted infections (6-9), including HIV (10-12).
Longitudinal studies of vaginal microbiota composition have revealed its dynamic nature:
microbiota composition frequently changes over time (4, 13, 14). In non-pregnant individuals, a
virtually complete replacement of the microbiota is sometimes observed, typically around the time
of menses (13, 15). While complete replacement is rare, more modest (i.e., of a fraction of the
microbiota composition), or slower (i.e., over a few days or weeks) changes in composition are
relatively common in both pregnant and non-pregnant individuals (4, 13, 14). The microbiota of
pregnant women may appear more stable than that of non-pregnant individuals; however,
differences in sampling frequencies (e.g., weekly during pregnancy vs daily outside of pregnancy)
might not allow us to fully characterize the differences in microbiota dynamic. Non-Lactobacillus
dominated microbiotas are generally less stable than Lactobacillus dominated ones (4, 13, 14).
Some Lactobacillus species, such as L. crispatus, better resist invasion or replacement by non-
Lactobacillus species and create greater vaginal ecosystem stability during and outside
pregnancy (14, 16, 17). Other Lactobacillus species, such as L. iners, are more frequently
associated with non-optimal communities (14, 16, 17). Non-optimal vaginal microbiotas (i.e., non-
Lactobacillus-dominated microbiota) are typically highly heterogeneous within and between
individuals (4, 14, 16). It remains, however, poorly understood whether non-optimal microbiota
composition is random (i.e., individual-specific) or if distinct sub-communities (i.e., consortia of
bacteria interacting with each other) exist within these diverse microbiotas. If such sub-
communities do exist, it remains to be seen whether they are differentially associated with

characteristics of the host or with specific negative health outcomes, such as preterm birth.

Efforts to address this question have so far relied on clustering approaches. Various clustering
methods are commonly applied to taxonomic abundance tables to define community structure.
This has led to the adoption of the concepts of community state types (CST) or community types
(CTs) (18, 19). More recently, in order to define reference sub-CSTs (i.e., dataset- or study-
independent state types), large composite datasets have been clustered, and several non-
Lactobacillus-dominated clusters (sub-CSTs) have been identified across populations of non-
pregnant women (20). Clustering serves as a useful dimensionality reduction tool for describing
complex microbiota compositions. However, clustering-based categorization of samples may fail

to capture clinically-relevant structures. For example, the vaginal microbiota of two women could
3
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belong to the same cluster because their microbiotas both show a bare majority of L. iners (e.g.,
60%), but be accompanied by L. crispatus in one case, and by a diverse panel of non-
Lactobacillus species in the other case. The two situations may appear similar (i.e., each may be
assigned to CST Ill), but they may be driven by different mechanisms and have different health
implications. In addition, clustering based approaches fail to model transition or intermediary
states between clusters (Fig 1). Modeling transitions is especially important in the context of the
vaginal microbiota as its composition may change several times over a few months, weeks or
even a few days, as observed in non-pregnant, menstruating individuals (4, 14-16). However,
because samples are assigned only to a single cluster (Fig1a), transitions between clusters may
appear identical (i.e., described by the same sequence of clusters) while the underlying
microbiota trajectories were drastically different in rate (progressive vs abrupt) or in the nature of
the intermediate compositions. Finally, while clustering approaches can identify sets of species
that frequently co-occur, they are not well suited to identify subsets of species that may have
similar functions but that are not frequently found together (Fig 1b). These discrepancies between
the clustering assumptions and our understanding of the composition and dynamics of the vaginal

microbiota highlight the need for better-suited dimension reduction statistical models.

Topic models, first developed to infer population structure (21) and later formally described as
Latent Dirichlet Allocation (LDA) in the context of natural language processing (22), have recently
been proposed for analyzing microbial communities and identifying sub-communities (23). In
contrast to clustering-based categorization, where each sample is assigned to a single category
based on the closest cluster, samples are modeled as mixtures of topics (sub-communities), and
each topic is characterized by a particular distribution of bacterial species or strains. For example,
if a sample were described as 70% topic 1 and 30% topic 2, this would mean that the species
subsumed in topic 1 accounted for 70% of the sample, while the species in topic 2 accounted for
the remaining 30%. Some species can be found in several topics (e.g., a species can co-exist
within two distinct sub-communities). Topics may be composed of a few species or strains
(sparse topics) or include a larger number. In addition to providing a more realistic model of
microbiota composition, topic models present the advantage of not requiring any normalization
of the taxa count tables (typically the number of 16S rRNA genes sequenced in each sample) as

they are hierarchical Bayesian models explicitly accounting for library sizes.

In this study, we sought to deepen our understanding of the fine structure of non-optimal vaginal
microbiotas by applying topic models (mixed membership models) to longitudinal samples
acquired from pregnant and non-pregnant women. We examined the similarities and differences

in sub-community composition between cohorts and compared them to previously identified
4
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reference clusters. We then investigated the clinical relevance of the identified sub-communities
and their association with host characteristics, pregnancy status, phase of the menstrual cycle
(in non-pregnant individuals), and the risk of preterm birth (in pregnant individuals). The
concentrations of vaginal metabolites (both host- and bacteria-produced) and cytokines (host-
produced) were also quantified longitudinally in non-pregnant individuals but at a lower temporal
resolution (five samples from 40 non-pregnant participants) and were analyzed for correlations

with the menstrual cycle.
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Figure 1: Topic models are mixed membership models that reveal transitions between states. (a) Schematics contrasting
sample characterization in a lower dimensional space by clustering methods versus topic models. In both schematics, each dot
is a sample. Larger colored dots in the clustering schematic indicate centroids. (b) Schematic illustrating the phenomenon of
“functional equivalence” and how clustering methods versus topic models represent it. We consider two or more species
potentially “functionally equivalent” if they tend to occupy the same ecological niche (thrive in similar environments and with other
species) but are rarely found together because they may compete for the same resources. (c-d) Examples of time-series displays
of changes in microbiota composition summarized by clusters membership (sub-CST - top) or topic proportions (bottom) in a
pregnant (panel ¢) and non-pregnant (panel d) participant. Topics were labeled such that their name matched the (sub)CST with

the most similar composition (see Fig. 2c).
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Results

Topic analysis identifies nine sub-communities in the vaginal microbiota of pregnant and
non-pregnant women.

We analyzed data from 2,179 vaginal samples collected weekly from 135 pregnant individuals
enrolled at two sites in the United States (Stanford University, Stanford, CA and University of
Alabama, Birmingham, AL) and 1,534 vaginal samples collected daily from 30 non-pregnant
individuals enrolled at the University of Alabama, Birmingham (Methods, Table S1 for
demographic data). Topic models were fit to the count data of 16S rRNA amplicon sequence

variants (ASVs) agglomerated by taxonomic assignment.

Topic analysis requires choosing K, the number of topics, to model the provided count data. K
can be estimated using cross-validation or, as recently proposed (24), by performing topic
alignment across models with different resolutions (i.e., with different K, Fig 2a). In contrast to
cross-validation, this latter approach shows how topics at higher resolution relate to topics at
lower resolution and provides several diagnostic scores. These scores characterize each topic
across degrees of resolution and allow us to evaluate whether the data deviate from LDA
assumptions. Our topic alignment suggested that 9 topics provided the best compromise between
dimension reduction and accurate modeling of taxonomic counts (Methods, SI, Fig 2a-b). If a
coarser resolution were desired, the alignment refinement scores suggested that K = 5 topics
would be the most suited as topics at higher resolutions were sub-topics of these five topics (Sl,
Fig 2b).

At K =9, four of these nine topics were dominated by one of the four most common Lactobacillus
spp. (L. crispatus, L. gasseri, L. iners, and L. jensenii, Fig 2a-b). The composition of the five
remaining topics did not include any Lactobacillus spp. (Fig 2a-b). These five non-Lactobacillus
topics could be grouped into two groups based on the topic alignment: one group contained three
topics which included Gardnerella, Atopobium, and Megaspaera spp., while the other group

contained Finegoldia, Corynebacterium, and Streptococcus (Fig 2a-b).

Topics provide a more succinct, yet more accurate, description of microbiota composition
than sub-CSTs.

To evaluate the generalizability of the identified sub-communities, we compared the topic
composition with the composition of the 12 “reference” clusters (sub-CSTs, Valencia centroids)
described previously and identified in a composite dataset of non-pregnant individuals’ samples

(20) (Fig 2c). To compare topic and cluster compositions, we computed the Bray-Curtis
6
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dissimilarities between the two compositions after harmonizing taxonomic assignments (Fig 2c,
Methods, Sl). Topics were labeled to match the (sub-)CST label of the cluster to which they were
most similar (Methods) (Fig. 1c-d, Fig. 2b). The comparison showed that two L. crispatus-
dominated sub-CSTs (I-A and I-B) have high similarity with the single L. crispatus-dominated
topic (I). Similarly, two L. iners-dominated sub-CSTs (llI-A and 1lI-B) match a single L. iners-
dominated topic (lll). This is because CST I-A and I-B (or IlI-A and IlI-B) describe microbiotas
that are either fully dominated by L. crispatus (subCST I-A) or L. iners (subCST IlI-A) versus
those dominated by L. crispatus or L. iners but also hosting other species (sub-CST I-B or IlI-B).
In contrast, because topic models allow samples to be composed of several topics, a single topic
is sufficient to account for L. crispatus (topic I) or L. iners (topic Ill) counts. Samples in which L.
crispatus co-exists with L. iners will be represented by a mix of topics | and Ill, while a sample
where L. crispatus co-exists with a Gardnerella species by a mix of topics | and IV-A/B. CST Il

and V have a one-to-one optimal match with topics Il and V.

When comparing the non-Lactobacillus sub-CSTs and topics, we observed that (i) sub-CST IV-
A and IV-B are represented by three topics (IV-A, IV-B.a, and IV-B.b), which can, in part, be
explained by differences in taxonomic assignment used for topics (e.g., Gardnerella species are
undifferentiated in sub-CSTs, while, here, some Gardnerella ASVs were matched to different
species), and (ii) a single topic (IV-C1) matches four sub-CSTs (IV-C1 — IV-C4). This is because
these four sub-CSTs only differ in the proportion of 4 seemingly mutually exclusive species
(Streptococcus, Enterococcus, Bifidobacterium, and Staphylococcus), with one of these four
species dominating each sub-CST; the prevalence of the remaining species is similar across the
four IV-C1-4 sub-CSTs. In contrast, because topic models allow for synonyms, topic IV-C1

embeds these species within a single topic, as illustrated in Fig 1b.

We next examined three potential benefits of using topic mixed-memberships instead of
clustering categorization (sub-CSTs). Our first conjecture was that topics would provide a more
accurate representation of sample compositions than sub-CSTs. The second was that this effect
would be primarily driven by samples from unstable microbiotas. Our third conjecture held that
topic membership would better predict whether an individual is at risk of losing Lactobacillus

dominance at the next time-point.

To test our first conjecture (i.e., accuracy of representation), we compared the Bray-Curtis
dissimilarity between the actual sample compositions and the sample compositions predicted by
topic mixed memberships or by sub-CST membership. The predicted composition of a sample is

either the composition of the centroid of the sample’s sub-CST or the average topic composition
7
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(displayed in figure 2b) weighted by the proportion of each topic in that sample (Methods). The
Bray-Curtis dissimilarity between actual sample composition and predicted sample composition
was smaller when sample compositions were predicted by topics (Fig 2d). This effect was
stronger in pregnant participants (mean difference = 0.12, paired t-test p-value < 0.001) than in
non-pregnant participants (mean difference = 0.02, p-value < 0.001). The smaller mean
difference in non-pregnant women compared to pregnant women can partially be explained by
samples belonging to sub-CSTs IV-C1-4. These samples were dominated by one of the four
seemingly mutually exclusive species mentioned above (Streptococcus, Enterococcus,
Bifidobacterium, and Staphylococcus), considered synonyms in topic models, and found in a
single topic. When samples from sub-CST IV-C1-4 were omitted, the mean difference in

dissimilarity in non-pregnant women increased from 0.02 to 0.07.

Our second conjecture was that the composition of samples from stable microbiotas (i.e., the
microbiota composition remains largely unchanged over time) would be equally well described
by sub-CSTs or by topics because these microbiotas would have stabilized over more robust
sub-communities that can be well captured by clustering approaches. In contrast, we expected
that samples from unstable microbiotas would be better described by topic mixed memberships
because the transitions between well-defined sub-communities can be captured better by varying
memberships. Our results supported this expectation in pregnant participants, but not in non-
pregnant participants (Fig S1). To test this expectation, we used the Bray-Curtis dissimilarities
computed above and compared their differences (sub-CSTs vs topics) in samples from stable vs
unstable microbiotas. Samples were considered to harbor stable microbiotas if they belonged to
a group of at least 5 consecutive samples whose Bray-Curtis dissimilarity was less than 0.25
(similar results were obtained for 0.15 and 0.35 thresholds — see Table S2) and were considered
to harbor unstable microbiotas or transition states otherwise. In pregnant participants, the mean
difference in dissimilarities was 0.08 for samples from stable microbiotas and 0.14 for samples
from unstable microbiotas (one-sided t-test p-value < 0.001). In non-pregnant participants, these
differences were approximately the same in samples from both stable (0.03) and unstable (0.02)

microbiotas.

We next evaluated our third conjecture which was that topic memberships better identify
individuals at risk of losing Lactobacillus dominance, defined here as overall Lactobacillus
proportions falling below 50%. Past studies have shown that individuals whose microbiota is
categorized as CST Il (L. iners-dominated) are more at risk of losing Lactobacillus dominance
than those in other Lactobacillus-dominated CSTs (I, I, and V) (17, 25) but this risk has not been

evaluated with a more refined definition of microbiota composition. To do so, we trained logistic
8
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regression models to predict whether an individual would lose their Lactobacillus dominance.
Prediction performances were then evaluated on an independent test set and the procedure was
repeated ten times using random splits of the data into training and test sets (Methods). Since
only 11% of Lactobacillus dominated microbiotas switch to non-Lactobacillus dominated ones
(i.e., we are predicting rare events), the F1 score, which is the harmonic mean of the prediction’s
precision and sensitivity, was used to compare prediction performances (Fig 2e). This
comparison shows that topic memberships better predict the risk of losing Lactobacillus
dominance than sub-CST memberships do (median F1 score of 0.4 vs 0.27, Wilcoxon test p-
value < 0.002). Specifically, topic-based predictions are more precise (i.e., have a lower false
positive rate) than sub-CST-based predictions (precision of 0.26 vs 0.16, p-value < 0.002, Fig
S2).
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Figure 2: Sub-communities identified by topic models. (a) Alignment of topics (rectangles) for models fitted with an increasing
number of topics (x-axis). The height of the rectangles is scaled according to the total proportion of the corresponding topic in all
samples: taller rectangles represent more prevalent topics. Topics are connected across models (x-axis) according to their
alignment weight, which reflect their similarities (Methods). Topics of the k = 9 model are annotated with their most prevalent
species, and the numbers in brackets in front of each species indicate the proportion of that species in the topic. The annotations
included the three most prevalent species that made up at least 5% of the topic composition. (b) Topic composition for k = 5

(coarse representation) or k = 9 (optimal tradeoff between dimension reduction and descriptive accuracy) topics (side-by-side
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panels). The proportion of each species (y-axis) within each topic (x-axis) is encoded by the size of the dots. These proportions
sum to 1 for each topic. For readability and conciseness of the figure, species were included if they accounted for at least 0.5%
of a topic composition. (¢) Comparison of the topic (x-axis) and sub-CST (y-axis) compositions. Compositions were compared
using the Bray-Curtis dissimilarity. Topics and sub-CSTs with similar compositions are characterized by a low divergence and a
darker hue. (d) Bray-Curtis dissimilarity between actual sample composition and predicted sample composition (y-axis) by sub-
CSTs or topics (x-axis) in non-pregnant (left panel) and pregnant (right panel) individuals. Each line is a sample, colored by its
sub-CST membership. Stars in each panel indicate statistical significance of a one-sided paired t-test (***: < 0.001) (e) F1 scores
(y-axis) for the prediction of Lactobacillus dominance loss (i.e., total proportion of Lactobacillus falling below 50%) at the next
sample when the loss is predicted from sub-CST membership (light green) or topic memberships (dark turquoise). The F1 score
is the harmonic mean of the precision and the sensitivity of the predictions. Distributions were obtained from 10 independent

training-testing sets (Methods, Sl). Thin lines connect F1 scores from the same training-testing set.

Given these results and the three advantages conferred by topic-based description of microbiota
composition, we next explored the demographic associations and functional relevance of the

identified sub-communities.

Topic composition varies with demographic characteristics and pregnancy status.

The samples used in this study were collected from three cohorts: non-pregnant women recruited
at the University of Alabama Birmingham between 2009 and 2010, pregnant women recruited at
the same institution between 2013 and 2015, and pregnant women recruited at Stanford
University also between 2013 and 2015. Participants’ race and recruitment site were significantly
associated with differential proportions of several topics. The microbiotas of Black participants
and participants recruited at UAB were more likely to contain topics Ill (L. iners-dominated), V-
A, and IV-B.a (both non-Lactobacillus-dominated) (fig3a-c). Topics Il and IV-A were also more
prevalent in pregnant participants, while topics IV-B.b and IV-C1 were less prevalent than in non-

pregnant participants (fig3a-c).

Topics IV-CO and IV-C1 increase during menses; topic IV-C1 is also associated with
preterm birth.

The proportions of both topics IV-CO and IV-C1 increased during menses (p-values smaller than
0.001 and 0.01 resp., fig 3c). In contrast, the proportion of topic | (L. crispatus-dominated, p-value
< 0.01) decreased during menses. Consistent with previous findings (4), topic | (L. crispatus-
dominated) was associated with term delivery, while topic IV-C1 had a strong but mildly significant

(p = 0.051) association with preterm delivery.

10
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Figure 3: Sub-communities and demographic and reproductive characteristics. (a-b) Topic composition per racial group
(a) or cohort (b). Vertical bars show the longitudinal average topic (color) proportion for each participant (x-axis). Participants are
ordered by their most prevalent topic. (c) Dirichlet regression estimated coefficients (x-axis) quantifying the associations between
race, study site, pregnancy status (y-axis) and topic proportions (horizontal panels). Colors indicate the strength of the statistical
significance of the associations (p < 0.001: dark purple; p < 0.01: red; p < 0.05: orange; p < 0.1: yellow; p > 0.1: gray). (d) Topic
proportions throughout the menstrual cycle (cycle day 0 indicates the first day of menses — see Fig 4a). Each dot is a sample.
Lines connect samples from the same participant and cycle. Thick black lines show the average topic proportions across all
participants. Stars on the right indicate the statistical significance of the associations between topic proportions and menstrual
cycle (**: p < 0.001, **: p < 0.01). (e) Logistic regression estimated coefficients (x-axis) quantifying the association between

average topic proportion and preterm birth in pregnant individuals. Colors are as in panel (c).

The menstrual cycle shapes the vaginal microbial composition.

Prompted by the observation that the proportions of several topics varied with the menstrual
cycle, we further investigated longitudinal associations between menstrual cycle and microbiota
composition. Among the 30 non-pregnant participants, 26 had reported vaginal bleeding patterns
that allowed for identification of at least one menstrual cycle within the ten study weeks
(Methods), and for 20 participants, we had data over two consecutive menstrual cycles. Cycles
were standardized starting from 18 days before menses to 7 days after the first day of menses,
given that the luteal phase (after ovulation) is known to vary less in duration than the follicular
phase (before ovulation) (26, 27) (Fig 4a, Methods). Ovulation was assumed to occur around 2

weeks before the first day of menses based on average luteal phase duration (26, 27).
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The vaginal microbiota structure of 4/20 participants (20%), characterized by topic proportions,
showed a statistically significant agreement between consecutive cycles (Fig 4b-d) as measured
by the RV coefficient (adj. p-value < 0.05, Methods). However, while the topic proportions may
remain relatively stable throughout cycles, the underlying taxa composition may vary (e.g., for
participant UABO77, fig 4d-e). Half (10/20) of the participants had a statistically significant

agreement between their taxa proportions in two consecutive cycles (Fig 4b, right panel).
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Figure 4: The menstrual cycle shapes the microbial composition.

(a) Schematic illustrating the features of standardized cycles. (b) Scatter plot, in which each dot is a participant, showing the RV
coefficient of agreement (y-axis) between the relative proportions of topics (left panel) or taxa (right panels) of a participant’s
consecutive cycles and the magnitude of change in microbiota composition throughout the cycle measured by the maximum of
the pairwise Bray-Curtis dissimilarity between the average topic or taxa proportions for each cycleday (x-axis). Participants
selected for panels c-e are highlighted in blue. (c-d) Topic composition of two participants with data available for at least two full
menstrual cycles. The first menstrual cycle is displayed in orange and the second in black. These two participants were selected
to show the diversity of temporal profiles. The time series display shows topic proportion (y-axis) on each cycle day (x-axis). For
each study participant, topics were included if their median proportion across cycles was higher than 1% and their maximal
proportion was higher than 5%. (e) Same display as in panels c-d but where the y-axis shows the relative abundance of each

taxon for that participant. Taxa were included following the criteria used to select topics in panels c-d.

We further investigated whether the vaginal environment, characterized by pH values and vaginal
metabolite and cytokine concentrations, varied with the menstrual cycle. Consistent with past
results (18), the vaginal pH of Lactobacillus-dominated samples (i.e., proportions of Lactobacillus
> 50%) was lower (4.4, 90% 4.0-5.3) than that of non-Lactobacillus-dominated samples (5.0, 90%
4.0-5.8). The pH remained stable throughout the cycle (Lactobacillus-dominated: 4.3, 90% 4.0-
5.3; non-Lactobacillus dominated: 4.9, 90% 4.0-5.5), except during menses when it increased by
about 0.5 units in Lactobacillus-dominated (4.7, 90% 4.0-5.8) and non-Lactobacillus-dominated
samples (5.4, 90% 4.4-7.0) (Fig 5a).
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Half of the cytokines (10 out of 20, p-values < 0.01, adjusted for multiple testing) showed a
significant association with the menstrual cycle. Most cytokines (e.g., IL6 or TNFa) peaked during
menses, while two of them (IFNy and IL13) showed elevated abundance about the time of
ovulation (Fig 5b, Fig S3). 18% of metabolites (60 out of 336) were also significantly associated
with the menstrual cycle (Fig 5c¢, Fig S4). Most (72%) had increased or decreased abundances

in the late luteal phase or during menses (between cycle day -3 and 5, Fig S4).
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Figure 5: Vaginal pH, cytokines, and metabolites throughout the menstrual cycle.

(a) Distribution of vaginal pH throughout the menstrual cycle in Lactobacillus-dominated samples (blue) and non-Lactobacillus-
dominated samples (orange). Dots indicate the means, while the shaded vertical bars span from the 25" to the 75" percentiles.
(b-c) Concentration (y-axis) of four cytokines (panels in b) and six metabolites (panels in c¢) with significant concentration

variations throughout the menstrual cycle (x-axis). Each black dot is a sample.
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Discussion

In this study, we used topic models, a mixed membership method, to identify bacterial sub-
communities within vaginal microbiota samples from both pregnant and non-pregnant US
women. We identified four Lactobacillus-dominated sub-communities corresponding to the four
Lactobacillus-dominated community state types (CST), and five non-Lactobacillus sub-
communities (i.e., topics), refining the structure of samples traditionally assigned to community
state type (CST) IV (18). This CST is particularly relevant clinically as a paucity of Lactobacillus
species is associated with bacterial vaginosis (BV), increased risk of preterm birth, and

susceptibility to acquiring sexually transmissible infections (3, 5, 6, 10-12, 25, 28).

These five non-Lactobacillus sub-communities were found to belong to two groups. One group
contained three topics (IV-A, IV-B.a, IV-B.b) and was characterized by the co-occurrence of ASVs
taxonomically assigned to species from the Gardnerella, Megasphaera, Atopobium,
Fastidiosipila, and Sneathia genera and of Prevotella amnii. The other group contained two topics
(IV-CO and IV-C1). It was characterized by the co-occurrence of species from the
Corynebacterium,  Finegoldia,  Peptoniphilus, Bifidobacterium, Staphylococcus, and
Streptococcus genera, and of Prevotella bivia/denticola and timonensis. These two groups align
with sub-groups previously identified with a clustering approach that aimed to identify reference
community state types in non-pregnant women from a large collated dataset (20): sub-CST IV-A
and B belong to the first group of 3 topics, and sub-CSTs IV-C0-4 to the second group. This study
thus confirms that non-Lactobacillus-dominated microbiotas present sub-structures that may

have clinical relevance.

The main difference between the approach used here (topic analysis) and clustering approaches
traditionally used to identify sub-groups in the vaginal microbiota lies in the mixed membership
nature of topic models, thereby allowing samples to be associated with multiple topics in different
proportions. This property offers the advantage of revealing longitudinal transitions between sub-
communities and the rate at which they occur, which is impossible with clustering approaches.
We showed here that, in pregnant participants, stable microbiotas were almost equally well
characterized by clusters and topics; in contrast, unstable microbiotas composition was better
represented by mixed topic memberships than by sub-CSTs. We also observed that topic
memberships could better predict the risk that a participant's microbiota would lose its

Lactobacillus dominance and switch to a sub-optimal microbiota composition.

In this study, we compared topic- and clustering-based sample descriptions in cases in which

sub-communities (mixed) memberships were used as explanatory variables; the actual
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microbiota composition or the risk of losing Lactobacillus dominance were our response
variables. We expect that colleagues might also find advantages in using sub-communities mixed
memberships (topic-based sample description) as a multivariate response variable to identify
host or intervention related factors associated with specific transitions or intermediate states. In
contrast to univariate alternative or clustering, this might better reflect the potential multiple

etiologies of vaginal dysbiosis.

Another difference between topic models and clustering approaches is that topic models allow
for “synonyms”, which may reflect potential functional equivalences in a microbial community
context. Indeed, if two species are found interchangeably (but not simultaneously) with a specific
combination of other species, these two species will be found in the same topic. In contrast,
clustering approaches tend to create two clusters, one containing each of these two species,
potentially artificially increasing the number of functionally relevant sub-communities. This
matches our observations as a single topic encapsulates four sub-CSTs (IV-C1-4) (20)
characterized by four mutually exclusive taxa that co-occur with the same set of other species.
These four taxa belong to the genera Streptococcus, Enterococcus, Bifidobacterium, and
Staphylococcus and these sub-communities are found with higher prevalence in non-pregnant

individuals, often during menses.

Topic models used in this study are unsupervised methods, and, like clustering, topic models
identify dataset-specific features. This means that sub-communities identified in samples from a
different cohort may differ from those identified in this study. However, we expect these sub-
communities to be reproducibly observed in other (North American) populations since the sub-
communities revealed by our analysis were found in individuals from three distinct cohorts,
encompassing both pregnant and non-pregnant individuals. Further, the agreement between the
topic composition and the composition of sub-CSTs, which had been identified from non-pregnant
individuals’ samples, supports the generalizability of our findings. Deeper sequencing methods
(e.g., metagenomics) may allow a more precise taxonomic characterization of microbiota

samples, which may, in turn, enable further refinement of these sub-communities.

We found several associations between these subcommunities and the demographic
characteristics or reproductive status of participants. Specifically, Black women were more likely
to have a microbiota containing L. iners (topic Ill) and non-Lactobacillus subcommunities from
the first group (topics IV-A, IV-B.a, and IV-B.b). Regarding differences associated with
participants’ reproductive state, non-Lactobacillus topics from the second group (topics IV-CO

and IV-C1) were more prevalent in non-pregnant individuals than in pregnant women. They were
15
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especially more frequent during menses, a time characterized by elevated vaginal inflammation,
as 40% of the measured cytokines had higher concentrations during menses. In pregnant
individuals, topic IV-C1 showed a mildly significant association with the risk of preterm birth. It
remains to be investigated whether vaginal inflammation is also elevated in pregnant individuals
with a higher abundance of this sub-community. Our available data did not allow us to answer

this question.

Almost all non-pregnant participants with data available for two menstrual cycles showed a high
between-cycle correlation in their vaginal microbiota variation. Most topics or taxa, however,
reached their maximal relative abundance at different menstrual cycle phases in different
individuals. These inter-individual differences may be an artifact of the compositional nature (i.e.,
relative abundances) of our data or could be due to (i) inter-individual differences in menstrual
timing (for example, one participant might have a 10-day luteal phase while another one might
have a 14-day luteal phase); (ii) inter-individual differences in hormone levels (or the rates of
change in these levels); or (iii) the set of species present in each individual and how each of these
species might respond differently to the menstrual cycle while competing for resources. Future
clinical studies including hormonal measurements would allow a better understanding of the
relationships between hormonal changes and microbiota composition. Similarly, additional data
would be necessary to understand if abrupt hormonal changes, the presence of blood, or the use
of menstrual protections such as pads or tampons drive the substantial changes in vaginal

microbiota composition observed during menses.

These abrupt changes in microbiota composition around menses were accompanied by changes
in vaginal cytokine and metabolite levels. As mentioned above, 8 out of 20 measured cytokines
had elevated levels during menses (and 2 around ovulation), and 70% of the 60 metabolites that
varied with the menstrual cycle peaked or dropped during menses. For example, kynurenine
peaked during menses while isoleucine dropped. Kynurenine is a tryptophan catabolite via a
pathway involving IDO1-mediated degradation. It is known to play a role in blood vessel dilatation
during inflammatory events (29). The elevated levels of kynurenine during menses found in our
study are thus consistent with these roles and with past studies showing varying levels of
kynurenine in serum and urine through the cycle (30, 31). In our vaginal samples, isoleucine, a
branched-chain amino acid with important metabolic functions (32), was found with the highest
levels in the luteal phase and lowest during menses. Interestingly, serum levels of isoleucine
show opposite trends (33). The menstrual changes in cytokine concentrations were consistent
with those identified in previous studies in non-pregnant individuals (34, 35). In addition to the 8

cytokines that had elevated levels around menses, IFNy and IL13 had elevated levels around
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ovulation. Further studies in which the clinical and reproductive state of participants is more
accurately measured would allow one to confirm these findings and to further investigate the

associations between local inflammation and microbiota composition.

Conclusions

Topic analysis revealed bacterial sub-communities (topics) shared across pregnant and non-
pregnant women, confirming the existence of sub-structures in non-Lactobacillus-dominated
microbiota and their possible clinical relevance. Compared to clustering approaches traditionally
used to categorize microbial composition, topics provide an expanded characterization of the
heterogeneity of the previously described risk-associated community state type IV (CST IV), a
high-resolution view of transitions between communities, and they better predict the loss of
Lactobacillus dominance. We found that the menstrual cycle had a strong impact on the vaginal
microbiota and on vaginal levels of 60 metabolites and half (10/20) of the measured cytokines.
Specifically, one sub-community with increased prevalence during menses, a time of elevated
vaginal inflammation, was also mildly associated with the risk of preterm birth. In vitro studies will
provide further functional insights into the identified sub-communities, their ecological network,

and their effects on the vaginal epithelium.
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Material and Methods

Cohorts and sample collection

Daily samples from non-pregnant participants. The samples were obtained from 30 participants recruited
at the University of Alabama, Birmingham (UAB) as part of the UMB-HMP study, which enrolled
participants regardless of their BV diagnosis between 2009 and 2010 (15). Participants with symptomatic

BV were treated using standard-of-care practices (15). These 30 participants were selected to represent
women with stable Lactobacillus-dominated microbiota, stable non-Lactobacillus-dominated microbiota,
and unstable microbiota (i.e., with samples dominated by Lactobacillus and others dominated by non-
Lactobacillus). Each participant self-collected daily vaginal swabs for 10 weeks, resulting in a maximum
of 10 x 7 = 70 samples per individual. For further detail about recruitment criteria and sample collection,
see (15).

Weekly samples from pregnant women. We used the samples from both cohorts presented previously (4).

39 pregnant individuals were recruited at Stanford University (SU), and 96 pregnant individuals were
recruited at the University of Alabama, Birmingham (UAB) between 2013 and 2015. Pregnant participants
from both cohorts were enrolled from the fourth month of their pregnancy (earliest enroliment at week 8,
latest at week 22), and vaginal swabs were collected weekly (approximately) until delivery. There was an
average of 16 samples per participant and 2179 samples in total. The distributions of age, BMI, and race
were significantly different between the two cohorts (Table S1). Participants recruited at UAB were part of
a pool of individuals for which intramuscular progesterone injections (17-OHPC) were indicated or
recommended. UAB participants received that treatment throughout pregnancy. The treatment is intended
to reduce the risk of preterm birth in pregnant women with a singleton pregnancy and who have a history
of singleton spontaneous preterm birth. 9/39 (23 %, SU) and 41/96 (43 %, UAB) participants delivered
preterm, defined as a delivery before 37 weeks of gestation.

Metabolite and cytokine samples. Metabolites and cytokine concentrations were quantified in a subset of

the non-pregnant samples. Specifically, 5 samples per non-pregnant participant were selected such that
they were separated by approximately 2 weeks. In addition, 5 samples each were from 10 additional non-
pregnant participants of the UMB-HMP study but recruited at different sites (Emory University and the
University of Maryland Baltimore). In total, metabolites and cytokines were quantified in 200 samples from

40 non-pregnant individuals.

Ethics

All participants provided written informed consent. Ethical approval was obtained from the Institutional
Review Boards of Stanford University (IRB protocol no. 21956), the University of Alabama (protocol no.
X121031002), Birmingham, Emory University, and the University of Maryland Baltimore. All research was

conducted in compliance with relevant guidelines and regulations.

18



41
42
43
44
45
46
47
48
49
50
51
52
53
154
95
56
97
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"7
78

Vaginal microbiota sequencing

Daily samples from the 30 non-pregnant participants recruited at UAB (1534 samples). The V3-V4 regions

of the 16S rRNA gene were amplified and then sequenced with the lllumina HiSeq/MiSeq platforms.

Weekly samples from pregnant participants of both cohorts (SU and UAB) (2179 samples): Raw sequence

data from samples from pregnant participants were generated and processed as described in (4). In brief,
genomic DNA was extracted from vaginal samples using a PowerSoil DNA isolation kit (MO BIO
Laboratories). Barcoded primers 515F/806R (36) were used to amplify the V4 variable region of the 16S
rRNA gene from each sample. Pooled amplicons were sequenced on the lllumina HiSeq platforms at the
Roy J. Carver Biotechnology Center, University of lllinois, Urbana-Champaign.

Demultiplexed raw sequence data from lllumina HiSeq/MiSeq were resolved to amplicon sequence
variants (ASVs) as described in the DADA2 Workflow for Big Data
(https://benjjneb.github.io/dada2/bigdata.html) (37).

Taxonomic assignment. Automated taxonomic calls were made using DADA2’s implementation of the

RDP naive Bayesian classifier (38) and a Silva reference database (version 132) (39). The assignment of
sequences of the most abundant ASVs were refined and standardized by using BLAST and NCBI RefSeq
type strains. This is the case for Lactobacillus, Candidatus Lachnocurva vaginae (previously referred to
as BVAB1), Gardnerella, and Megasphaera lornae species-level assignments, following recently
published work on these species (40, 41). Gardnerella ASVs were tagged as G1, G2, or G3 sensu (4)
based on exact matching of the ASV sequences. Tables with the taxonomic assignments are available

(see data availability section).

Taxonomic agglomeration of ASV counts. ASV counts were aggregated based on their taxonomic

assignment such that the counts of ASVs with the same taxonomic assignment were summed.

Metabolite concentration quantification

Untargeted metabolomics was performed on 200 non-pregnant participant samples by ultra-high-
performance liquid chromatography/tandem mass spectrometry (Metabolon, Inc.). Metabolite
identification was performed at Metabolon based on an internally validated compound library, and results
were expressed in relative concentrations, following the same protocol as in (42). All samples were

shipped and analyzed in a single batch.

Data transformation. We transformed the raw metabolite relative concentrations using a variance

stabilizing method (43). Raw data included the concentrations of 853 metabolites. However, the
abundance of 517 metabolites was missing in more than 50% of the samples. We removed these
metabolites from the analysis. Despite this, measurements for most of the remaining 336 metabolites were

still missing in at least one sample. Metabolites might be missing because their abundance was lower
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than the detection limits or because the overall quality of a sample was lower. A sample with more than

60% missing metabolites was further excluded for the rest of the analysis.

Cytokine concentration quantification

Vaginal cytokines were quantified in the 200 non-pregnant participant samples using a Luminex-based
assay with a custom kit of 20 analytes (IFNy, IL-1a, IL-1b, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-
17, IL-21, IL-23, IP-10, ITAC, MIG, MIP-1a, MIP-1b, MIP-3a, and TNFa) following the same protocol as in
(12). The assay was run on a Luminex FLEXMAP 3D instrument. For measurements that were below the
limit of quantification for a given cytokine, values were imputed at half the lower limit of quantification
(LLOQ/ 2). For measurements that were above the limit of quantification for a given cytokine, values were
imputed as equal to the upper limit of quantification (ULOQ). Values reported here represent medians of
two technical replicates. The medians were calculated after imputation in one or both replicates (if
necessary), as described above. Missing cytokine values represent technical failures of the assay for that

analyte.

Data transformation. Raw cytokine abundances were log-transformed. Raw data included the abundance

of 20 cytokines. Most of the cytokines could be quantified (11/4000 data points were missing).

Data integration into a multi-assay experiment (MAE) object

All analyses were performed in the R software environment (44). Specific packages used for the analyses
are referred to in the next sections. The raw datasets were loaded and minimally processed before being
formatted into SummarizeExperiment objects of the SummarizedExperiment bioconductor package (45),

then combined into a single S4 object using the MultiAssayExperiment bioconductor package (46).

Identifying bacterial sub-communities using topic analysis

Microbial communities were estimated based on LDA (latent Dirichlet allocation) (22, 23). LDA models
were fitted to the data for K (the number of topics) = 1 to 25 using the R package “topicmodels” (47).
Models were fitted on the taxonomically agglomerated ASV counts directly, without any prior
normalization; the library size being one of the parameters of this Bayesian framework.

Topics were aligned across K using the topic alignment method described in (24). To identify robust topics

across K, we used the alignment summary scores for topic coherence as defined in the same reference.

Comparison of topic composition with subCST composition.

Both sub-CSTs centroids (20) and topics are described as compositional data: for each sub-CST or topic,
the proportion of each species is provided such that the proportions sum to one per sub-CST/topic.
However, the taxonomic assignment used by France et al. (20) differs from the assignment used here.
For example, sub-CSTs taxonomy does not differentiate between Gardnerella species or uses “BVAB1”
when we use Ca. Lachnocurva vaginae. Consequently, to compare topics with sub-CSTs, we proceeded

in two steps. First, we harmonized the taxonomic assignments between the two methods (e.g., proportions
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of the different Gardnerella species were aggregated). A dictionary of the matched taxonomic assignment
is available in the supplementary material. We then computed the Bray-Curtis dissimilarity between the

composition of each topic and sub-CST centroid.

Assignment to Valencia reference sub-CST
Per France et al. (20), samples were assigned to the sub-CST that maximizes the Yue and Clayton

similarity between the sample composition and the sub-CST centroids.

Microbiota composition prediction from sub-CST and topic membership

To compare how well sample composition was represented by sub-CST categories (fixed composition) or
topics (fewer topics than sub-CSTs, but mixed memberships), we compared the Bray-Curtis dissimilarity
between the actual sample compositions and the sample compositions predicted by topic mixed
memberships or by sub-CST membership. The predicted composition of a sample is either the
composition of the centroid of the sample’s sub-CST or the average of topics composition (displayed in
figure 2b) weighted by the proportion of each topic in that sample (i.e., p;; = yK_ 1Yik Pxj where p;; is
the proportion of taxa j in sample i, k is the topic index going from 1 to K, the total number of topics, y; is

the proportion of topic k in sample i, and S is the proportion of taxa j in topic k).

Microbiota local stability
Samples were classified as belonging to a stable microbiota if they were part of a series of 5 consecutive
samples with a Bray-Curtis dissimilarity smaller than a given threshold. Otherwise, the microbiota was

considered unstable.

Predicting the risk of losing Lactobacillus dominance

To predict the risk of losing Lactobacillus dominance at the next time-point in participants’ longitudinal
time series, a logistic regression model was fitted to the data. The explanatory variables were either the
sub-CST category of the sample or the topic proportion at the current time point. The response variable
was a binary variable indicating if the next sample belonged to a Lactobacillus-dominated sub-CST or not.
Lactobacillus dominance was defined as a total proportion of Lactobacillus larger than 50%. The models
were fitted on a training set (a random sample comprising 80% of the total dataset) and prediction
performances were evaluated on the remaining 20% of the dataset. The procedure was repeated
independently 10 times. Because the loss of Lactobacillus dominance is rare (10% of cases), we weighted
the sample to give more weight (10 folds) to the minority class when training the models, and we used the
F1 score, the harmonic mean between precision and sensitivity, to evaluate predictive performances. To
test for differences in the sub-CST- vs topic-based prediction performances, a non-parametric Wilcoxon

Rank sum test was used.

Associations between topic composition and demographic variables
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A Dirichlet regression was used to test if race, study site, or pregnancy were associated with differential
topic proportions. Because most participants’ race was Black or White, the race was transformed into a
three-category variable: Black, Other, and White, with “Other” serving as the reference. Pregnancy was a
binary variable (pregnant vs. non-pregnant), and so was the study site: Stanford University (SU) vs.
University of Alabama Birmingham (UAB). The model used is p = + azR + apP + asS + ewhere p
is the vector of topic proportions lying on the K-dimension simplex. Coefficients were obtained using the
DirichletReg package in R (48).

Identification of phases of the menstrual cycle

Menstrual cycles were identified from bleeding flows reported daily by participants on a scale from 0 (none)
to 3 (heavy). A hidden semi-Markov model was specified to account for empirically observed distributions
of cycle length and bleeding patterns across the menstrual cycle, including spotting between menses (49).
Data of participants who reported too few days with bleeding (i.e., less than 3/70 study days) or too many
(i.e., more than 30/70 study days) were excluded from the menstrual cycle analyses. Once cycles were
identified (see Fig S5), cycle days were numbered forward and backward from the first day of the period.
To align the two major menstrual events (i.e., ovulation and menses) across participants and given that
the luteal phase has been well documented to vary less than the follicular phase (27), cycles were
standardized starting from day -18 (i.e., 18 days before the start of the next cycle) and ending on day +7
(i.e., 7 days after the first day of the menses). This definition ensures that the standardized cycles would
include the days leading to ovulation, estimated to happen around days -12 to -14 (27), and allows for the
best possible alignment of the two major menstrual events (ovulation and menses) in the absence of

hormonal and/or ovulation markers.

Testing for differential abundance throughout the menstrual cycle

To identify metabolites, cytokines, or topics with differential abundance (metabolites or cytokines) or
differential probabilities of being present at specific phases of the menstrual cycle, a linear model (for
abundances) or logistic regression (proportions) was fitted to circular splines parameterized with 4
degrees of freedom (R package “pbs”). Analysis of deviance was used to report p-values of the F-statistics

and corrected for multiple testing using the Benjamini-Hochberg method.

Associations between topic proportions and preterm birth.
To test if topic proportions were associated with preterm birth, a logistic regression model was fitted on
the data. Explanatory variables were the per-participant topic proportion averages, and the response

variable was a binary variable indicating whether participants delivered preterm or not.

Correlation in vaginal microbiota composition between two consecutive cycles
To evaluate how the menstrual cycle affects the vaginal microbiota composition, we compute the RV
coefficient (50) and associated permutation test p-value (51) between the topic or taxa proportions of the

first cycle and of the second cycle. To quantify the magnitude of change in microbiota composition
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throughout the cycle (x-axes of fig 4b), we first compute the average topic or taxa proportion across cycles
for each cycleday. Then, the pairwise Bray-Curtis dissimilarities are computed so that the compositions
of each cycleday are compared against each other. The maximum value is used to quantify the magnitude

of change throughout the menstrual cycle for each participant.

Availability of data and materials
The sequence data for samples from non-pregnant study participants are available in the NCBI Sequence
Read Archive (SRA) under BioProject accession numbers PRINA208535 (samples beginning with UAB)

and PRJUNAS575586 (samples beginning with AYAC and EM). Sequence data from samples from pregnant
study participants are available on the SRA (accession no. PRINA393472). The raw data and R code

enabling the reproduction of the analyses are available at https://purl.stanford.edu/gp215vr4425. The

code is also provided in the Sl.
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